Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38539776

RESUMO

The Boltzmann kinetic equation for dilute granular suspensions under simple (or uniform) shear flow (USF) is considered to determine the non-Newtonian transport properties of the system. In contrast to previous attempts based on a coarse-grained description, our suspension model accounts for the real collisions between grains and particles of the surrounding molecular gas. The latter is modeled as a bath (or thermostat) of elastic hard spheres at a given temperature. Two independent but complementary approaches are followed to reach exact expressions for the rheological properties. First, the Boltzmann equation for the so-called inelastic Maxwell models (IMM) is considered. The fact that the collision rate of IMM is independent of the relative velocity of the colliding spheres allows us to exactly compute the collisional moments of the Boltzmann operator without the knowledge of the distribution function. Thanks to this property, the transport properties of the sheared granular suspension can be exactly determined. As a second approach, a Bhatnagar-Gross-Krook (BGK)-type kinetic model adapted to granular suspensions is solved to compute the velocity moments and the velocity distribution function of the system. The theoretical results (which are given in terms of the coefficient of restitution, the reduced shear rate, the reduced background temperature, and the diameter and mass ratios) show, in general, a good agreement with the approximate analytical results derived for inelastic hard spheres (IHS) by means of Grad's moment method and with computer simulations performed in the Brownian limiting case (m/mg→∞, where mg and m are the masses of the particles of the molecular and granular gases, respectively). In addition, as expected, the IMM and BGK results show that the temperature and non-Newtonian viscosity exhibit an S shape in a plane of stress-strain rate (discontinuous shear thickening, DST). The DST effect becomes more pronounced as the mass ratio m/mg increases.

2.
Phys Rev E ; 108(2-1): 024903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723720

RESUMO

The Enskog kinetic theory is applied to compute the mean square displacement of impurities or intruders (modeled as smooth inelastic hard spheres) immersed in a granular gas of smooth inelastic hard spheres (grains). Both species (intruders and grains) are surrounded by an interstitial molecular gas (background) that plays the role of a thermal bath. The influence of the latter on the motion of intruders and grains is modeled via a standard viscous drag force supplemented by a stochastic Langevin-like force proportional to the background temperature. We solve the corresponding Enskog-Lorentz kinetic equation by means of the Chapman-Enskog expansion truncated to first order in the gradient of the intruder number density. The integral equation for the diffusion coefficient is solved by considering the first two Sonine approximations. To test these results, we also compute the diffusion coefficient from the numerical solution of the inelastic Enskog equation by means of the direct simulation Monte Carlo method. We find that the first Sonine approximation generally agrees well with the simulation results, although significant discrepancies arise when the intruders become lighter than the grains. Such discrepancies are largely mitigated by the use of the second Sonine approximation, in excellent agreement with computer simulations even for moderately strong inelasticities and/or dissimilar mass and diameter ratios. We invoke a random walk picture of the intruders' motion to shed light on the physics underlying the intricate dependence of the diffusion coefficient on the main system parameters. This approach, recently employed to study the case of an intruder immersed in a granular gas, also proves useful in the present case of a granular suspension. Finally, we discuss the applicability of our model to real systems in the self-diffusion case. We conclude that collisional effects may strongly impact the diffusion coefficient of the grains.

3.
Entropy (Basel) ; 24(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741546

RESUMO

It is well-recognized that granular media under rapid flow conditions can be modeled as a gas of hard spheres with inelastic collisions. At moderate densities, a fundamental basis for the determination of the granular hydrodynamics is provided by the Enskog kinetic equation conveniently adapted to account for inelastic collisions. A surprising result (compared to its molecular gas counterpart) for granular mixtures is the failure of the energy equipartition, even in homogeneous states. This means that the partial temperatures Ti (measuring the mean kinetic energy of each species) are different to the (total) granular temperature T. The goal of this paper is to provide an overview on the effect of different partial temperatures on the transport properties of the mixture. Our analysis addresses first the impact of energy nonequipartition on transport which is only due to the inelastic character of collisions. This effect (which is absent for elastic collisions) is shown to be significant in important problems in granular mixtures such as thermal diffusion segregation. Then, an independent source of energy nonequipartition due to the existence of a divergence of the flow velocity is studied. This effect (which was already analyzed in several pioneering works on dense hard-sphere molecular mixtures) affects to the bulk viscosity coefficient. Analytical (approximate) results are compared against Monte Carlo and molecular dynamics simulations, showing the reliability of kinetic theory for describing granular flows.

4.
Phys Rev E ; 106(6-1): 064902, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671144

RESUMO

The Enskog kinetic theory of multicomponent granular suspensions employed previously [Gómez González, Khalil, and Garzó, Phys. Rev. E 101, 012904 (2020)2470-004510.1103/PhysRevE.101.012904] is considered further to determine the four transport coefficients associated with the heat flux. These transport coefficients are obtained by solving the Enskog equation by means of the application of the Chapman-Enskog method around the local version of the homogeneous state. Explicit forms of the heat flux transport coefficients are provided in steady-state conditions by considering the so-called second Sonine approximation to the distribution function of each species. Their quantitative variation on the control parameters of the mixture (masses and diameters, coefficients of restitution, concentration, volume fraction, and the background temperature) is demonstrated and the results show that in general the dependence of the heat flux transport coefficients on inelasticity is clearly different from that found in the absence of the gas phase (dry granular mixtures). As an application of the general results, the stability of the homogeneous steady state is analyzed by solving the linearized Navier-Stokes hydrodynamic equations. The linear stability analysis (which holds for wavelengths long compared with the mean free path) shows that the transversal and longitudinal modes are always stable with respect to long-enough wavelength excitations. This conclusion agrees with previous results derived for monocomponent and (dilute) bidisperse granular suspensions but contrasts with the instabilities found in previous works in dry (no gas phase) granular mixtures.


Assuntos
Temperatura Alta , Hidrodinâmica , Temperatura , Cinética , Suspensões
5.
Phys Rev E ; 100(3-1): 032904, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640030

RESUMO

The Chapman-Enskog solution to the Enskog kinetic equation of polydisperse granular mixtures is revisited to determine the first-order contributions ϖ_{i} to the partial temperatures. As expected, these quantities (which were neglected in previous attempts) are given in terms of the solution to a set of coupled integrodifferential equations analogous to those for elastic collisions. The solubility condition for this set of equations is confirmed and the coefficients ϖ_{i} are calculated by using the leading terms in a Sonine polynomial expansion. These coefficients are given as explicit functions of the sizes, masses, composition, density, and coefficients of restitution of the mixture. Within the context of small gradients, the results apply for arbitrary degrees of inelasticity and are not restricted to specific values of the parameters of the mixture. In the case of elastic collisions, previous expressions of ϖ_{i} for ordinary binary mixtures are recovered. Finally, the impact of the first-order coefficients ϖ_{i} on the bulk viscosity η_{b} and on the first-order contribution ζ^{(1)} to the cooling rate is assessed. It is shown that the effect of ϖ_{i} on η_{b} and ζ^{(1)} is not negligible, specially for disparate mass ratios and strong inelasticity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...